Связанные понятия
Локально компактное пространство — топологическое пространство, у каждой точки которого существует открытая окрестность, замыкание которой компактно. Иногда используется более слабое определение: достаточно чтобы каждая точка имела компактную окрестность (открытость окрестности здесь не предполагается). В случае хаусдорфова пространства эти определения эквивалентны.
Алгебра над полем — это векторное пространство, снабженное билинейным произведением. Это значит, что алгебра над полем является одновременно векторным пространством и кольцом, причём эти структуры согласованы. Обобщением этого понятия является алгебра над кольцом, которая, вообще говоря, является не векторным пространством, а модулем над некоторым кольцом.
Факторкольцо ́ — общеалгебраическая конструкция, позволяющая распространить на случай колец конструкцию факторгруппы. Любое кольцо является группой по сложению, поэтому можно рассмотреть её подгруппу и взять факторгруппу. Однако для того, чтобы на этой факторгруппе можно было корректно определить умножение, необходимо, чтобы исходная подгруппа была замкнута относительно умножения на произвольные элементы кольца, то есть являлась идеалом.
Алгебраическая группа — это группа, являющаяся одновременно алгебраическим многообразием, причём групповая операция и операция взятия обратного элемента являются регулярными отображениями многообразий.
Теоремы об изоморфизме в алгебре — ряд теорем, связывающих понятия фактора, гомоморфизма и вложенного объекта. Утверждением теорем является изоморфизм некоторой пары групп, колец, модулей, линейных пространств, алгебр Ли или прочих алгебраических структур (в зависимости от области применения). Обычно насчитывают три теоремы об изоморфизме, называемые Первой (также основная теорема о гомоморфизме), Второй и Третьей. Хотя подобные теоремы достаточно легко следуют из определения фактора и честь их открытия...
Топологическое векторное пространство , или топологическое линейное пространство, — векторное пространство, наделённое топологией, относительно которой операции сложения и умножения на число непрерывны.
Проекти́вный мо́дуль — одно из основных понятий гомологической алгебры. С точки зрения теории категорий, проективные модули являются частным случаем проективных объектов.
Алгебра над кольцом — алгебраическая система, которая является одновременно модулем над этим кольцом и кольцом сама по себе, причём эти две структуры взаимосвязаны. Понятие алгебры над кольцом является обобщением понятия алгебры над полем, аналогично тому как понятие модуля обобщает понятие векторного пространства.
Гомологическая алгебра — ветвь алгебры, изучающая алгебраические объекты, заимствованные из алгебраической топологии. Первыми гомологические методы в алгебре применили в 40-х годах XX века Фаддеев, Дмитрий Константинович, С. Эйленберг и С. Маклейн при изучении расширений групп.
Коне́чноме́рное простра́нство — это векторное пространство, в котором имеется конечный базис — порождающая (полная) линейно независимая система векторов. Другими словами, в таком пространстве существует конечная линейно независимая система векторов, линейной комбинацией которых можно представить любой вектор данного пространства.
Гру́ппа Галуа ́ — группа, ассоциированная с расширением поля. Играет важную роль при исследовании расширений полей, в частности, в теории Галуа. Это понятие (в контексте группы перестановок корней многочлена) ввёл в математику Эварист Галуа в 1832 году.
Алгебраическая комбинаторика — это область математики, использующая методы общей алгебры, в особенности теории групп и теории представлений, в различных комбинаторных контекстах и, наоборот, применяющая комбинаторные техники к задачам в алгебре.
Представле́ние гру́ппы (точнее, линейное представление группы) — гомоморфизм заданной группы в группу невырожденных линейных преобразований векторного пространства.
Упорядоченное поле — алгебраическое поле, для всех элементов которого определён линейный порядок, согласованный с операциями поля. Наиболее практически важными примерами являются поля рациональных и вещественных чисел.
Произведение топологических пространств — это топологическое пространство, полученное, как множество, декартовым произведением исходных топологических пространств, и снабжённое естественной топологией, называемой топологией произведения или тихоновской топологией. Слово «естественная» здесь употребляется в смысле теории категорий и означает, что эта топология удовлетворяет некоторому универсальному свойству.
Сепара́бельное пространство (от лат. separabilis — отделимый) — топологическое пространство, в котором можно выделить счётное всюду плотное подмножество.
Расшире́ние Галуа ́ — алгебраическое расширение поля E/K, являющееся нормальным и сепарабельным. При этих условиях E будет иметь наибольшее количество автоморфизмов над K (если E конечно, то количество автоморфизмов также конечно и равно степени расширения ).
Теория колец — раздел общей алгебры, изучающий свойства колец — алгебраических структур со сложением и умножением, схожими по поведению со сложением и умножением чисел. Выделяются два раздела теории колец: изучение коммутативных и некоммутативных колец.
Бордизм , также бордантность — термин топологии, употребляющийся самостоятельно или в составе стандартных...
Абелева категория — категория, в которой морфизмы можно складывать, а ядра и коядра существуют и обладают определёнными удобными свойствами. Пример, который стал прототипом абелевой категории — категория абелевых групп. Теория абелевых категорий была разработана Александром Гротендиком для объединения нескольких теорий когомологий. Класс абелевых категорий замкнут относительно нескольких категорных конструкций; например, категория цепных комплексов с элементами из абелевой категории и категория функторов...
Схе́ма — математическая абстракция, позволяющая связать алгебраическую геометрию, коммутативную алгебру и дифференциальную геометрию и переносить идеи из одной области в другую. В первую очередь понятие схемы позволяет перенести геометрическую интуицию и геометрические конструкции, такие как тензорные поля, расслоения и дифференциалы, в теорию колец. Исторически теория схем возникла с целью обобщения и упрощения классической алгебраической геометрии итальянской школы XIX века, занимавшейся исследованием...
Связное пространство — непустое топологическое пространство, которое невозможно разбить на два непустых непересекающихся открытых подмножества.
Ба́нахово пространство — нормированное векторное пространство, полное по метрике, порождённой нормой. Основной объект изучения функционального анализа.
Симплектическое многообразие — это многообразие с заданной на нём симплектической формой, то есть замкнутой невырожденной дифференциальной 2-формой.
Двойственное пространство (иногда сопряжённое пространство) — пространство линейных функционалов на заданном векторном пространстве.
Компа́ктное простра́нство — определённый тип топологических пространств, обобщающий свойства ограниченности и замкнутости в евклидовых пространствах на произвольные топологические пространства.
Определённый интеграл — аддитивный монотонный функционал, заданный на множестве пар, первая компонента которых есть интегрируемая функция или функционал, а вторая — область в множестве задания этой функции (функционала).
Разрешимая группа — группа, ряд коммутантов которой заканчивается на тривиальной группе.
Простая группа — группа, не имеющая нормальных подгрупп, отличных от всей группы и единичной подгруппы.
Тополо́гия Зари́сского , или топология Зариского, — специальная топология, отражающая алгебраическую природу алгебраических многообразий. Названа в честь Оскара Зарисского и, начиная с 1950-х годов, занимает важное место в алгебраической геометрии.
А́лгебра Ли — объект общей алгебры. Естественно появляется при изучении инфинитезимальных свойств групп Ли.
Полное метрическое пространство — метрическое пространство, в котором каждая фундаментальная последовательность сходится (к элементу этого же пространства).
Аффи́нное простра́нство — математический объект (пространство), обобщающий некоторые свойства евклидовой геометрии. В отличие от векторного пространства, аффинное пространство оперирует с объектами не одного, а двух типов: «векторами» и «точками».
В математике свободная абелева группа (свободный Z-модуль) — это абелева группа, имеющая базис, то есть такое подмножество элементов группы, что для любого её элемента существует единственное его представление в виде линейной комбинации базисных элементов с целыми коэффициентами, из которых только конечное число являются ненулевыми. Элементы свободной абелевой группы с базисом B называют также формальными суммами над B. Свободные абелевы группы и формальные суммы используются в алгебраической топологии...
Алгебраическое многообразие — центральный объект изучения алгебраической геометрии. Классическое определение алгебраического многообразия — множество решений системы алгебраических уравнений над действительными или комплексными числами. Современные определения обобщают его различными способами, но стараются сохранить геометрическую интуицию, соответствующую этому определению.
Квадратичная форма — функция на векторном пространстве, задаваемая однородным многочленом второй степени от координат вектора.
Катего́рия мно́жеств — категория, объекты которой — множества, а морфизмы между множествами A и B — все функции из A в B. Обозначается Set. В аксиоматике Цермело — Френкеля «множества всех множеств» не существует, а работать с понятием класса не очень удобно; для этой проблемы было предложено несколько различных решений.
Двойственность в теории категорий — соотношение между свойствами категории C и так называемыми двойственными свойствами двойственной категории Cop. Взяв утверждение, касающееся категории C и поменяв местами образ и прообраз каждого морфизма, так же как и порядок применения морфизмов, получим двойственное утверждение, касающееся категории Cop. Принцип двойственности состоит в том, что истинные утверждения после такой операции переходят в истинные, а ложные в ложные.
Инвариа́нт — это свойство некоторого класса (множества) математических объектов, остающееся неизменным при преобразованиях определённого типа.
Гру́ппа в математике — множество, на котором определена ассоциативная бинарная операция, причём для этой операции имеется нейтральный элемент (аналог единицы для умножения), и каждый элемент множества имеет обратный. Ветвь общей алгебры, занимающаяся группами, называется теорией групп.
Непреры́вное отображе́ние (непрерывная функция) — отображение из одного пространства в другое, при котором близкие точки области определения переходят в близкие точки области значений.
Абелево многообразие — это проективное алгебраическое многообразие, являющееся алгебраической группой (это значит, что закон композиции задаётся регулярной функцией).
Преде́л — одно из основных понятий математического анализа. Различают предел последовательности и предел функции.
Подмногообразие ― термин, используемый для нескольких схожих понятий в общей топологии, дифференциальной геометрии и алгебраической геометрии.
Систе́ма корне́й (корнева́я систе́ма) в математике — конфигурация векторов в евклидовом пространстве, удовлетворяющая определённым геометрическим свойствам.